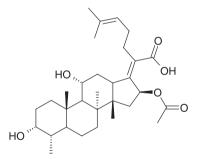
# **JLCR**

# **Research Article**

# Synthesis of radiolabelled photolabile fusidic acid analogues

## SØREN CHRISTIAN SCHOU\*, DITTE RIBER and GUNNAR GRUE-SØRENSEN

Medicinal Chemistry Research, LEO Pharma, 55 Industriparken, DK-2750 Ballerup, Denmark


Received 27 July 2006; Revised 8 August 2007; Accepted 13 August 2007

**Abstract:** Two analogues of the antibiotic fusidic acid with photolabile groups, 4-azidophenyl and 4-benzoylphenyl, were successfully labelled with tritium via Pd/C catalysed tritiation of unsaturated precursors. Specific activities of 36 and 44 Ci/mmol were obtained. Copyright © 2007 John Wiley & Sons, Ltd.

Keywords: tritium; photolabile groups; fusidic acid analogues; Pd/C catalysed tritiation

#### Introduction

Fusidic acid is a unique antibiotic with a potent activity against *Staphylococcus aureus*. Fusidic acid inhibits the bacterial protein synthesis by interference with the elongation factor G (EF-G)/ribosome complex. In an attempt to clarify the mechanism of action of fusidic acid, two radioactive, photolabile-labelled compounds ( $[24,25^{-3}H_2]$ **5** and  $[24,25^{-3}H_2]$ **8**) were prepared. Tritium was introduced via a Pd/C-catalysed tritiation.



Fusidic Acid

# Results and discussion

Compounds **1** and **2** (24-E/Z; 1:3 mixture) were prepared according to a described method.<sup>1</sup> [24,25-<sup>3</sup>H<sub>2</sub>]**3** was prepared by treating **1** and **2** with <sup>3</sup>H<sub>2</sub> gas in MeOH for 70 min in the presence of Pd/C affording 600 mCi crude product. [24,25-<sup>3</sup>H<sub>2</sub>]**3** was

transformed into the azide  $[24,25^{-3}H_2]\mathbf{4}$  by a procedure reported by Liu and Tor<sup>2</sup> by treating the amine with triflyl azide and triethylamine in the presence of CuSO<sub>4</sub> as catalyst. The protective group was removed by treating  $[24,25^{-3}H_2]\mathbf{4}$  with  $K_2CO_3$  in MeOH at room temperature for 1.5 h. Final purification was achieved by prep-HPLC (RP-18, THF:H<sub>2</sub>O:CH<sub>3</sub>COOH (50:50:1)) affording  $[24,25^{-3}H_2]\mathbf{5}$  (37.8 mCi) with a specific activity of 36 Ci/mmol in 6.3% overall radiochemical yield. Because of an unexpected formation of 3-formyl- $[24,25^{-3}H_2]\mathbf{5}$  when THF:H<sub>2</sub>O:HCOOH (50:50:1) was used as eluent in the HPLC purification, a reduced yield was obtained. By replacing formic acid with acetic acid in the HPLC eluent no esterification of  $[24,25^{-3}H_2]\mathbf{5}$  took place (Scheme 1).

Compounds **6** and **7** (24-*E/Z*; 1:3 mixture), prepared as described in the literature, <sup>1</sup> were treated with <sup>3</sup>H<sub>2</sub> gas in the presence of Pd/C in MeOH for 12 min affording 638 mCi of crude [24,25-<sup>3</sup>H<sub>2</sub>]**8**. The crude product was filtered through silica gel to remove remains of catalyst followed by prep-HPLC purification (RP-18, THF:H<sub>2</sub>O:CH<sub>3</sub>COOH (37:63:0.5)) affording [24,25-<sup>3</sup>H<sub>2</sub>]**8** (161 mCi) with a specific activity of 44 Ci/mmol in 25% overall radiochemical yield. Owing to difficulties in the HPLC separation of unreacted *E*-isomer (**6**) from [24,25-<sup>3</sup>H<sub>2</sub>]**8**, not all [24,25-<sup>3</sup>H<sub>2</sub>]**8** was isolated from the reaction mixture (Scheme 2).

### **Acknowledgements**

We are indebted to Drs Stefan Nückel and Christian Meisterhans (catalytic tritiation) at RC TRITEC AG, Teufen. Switzerland, for the invaluable assistance.



<sup>\*</sup>Correspondence to: Søren Christian Schou, Medicinal Chemistry Research, LEO Pharma, 55 Industriparken, DK-2750 Ballerup, Denmark. E-mail: sscdk@leo-pharma.com

#### Scheme 1

#### Scheme 2

# **REFERENCES**

1. Riber D, Venkataramana M, Sanyal S, Duvold T. J Med Chem 2006; 49: 1503-1505.

2. Liu Q, Tor Y. Org Lett 2003; 5: 2571–2572.